Proteomic Analysis of Mice Fed Methionine and Choline Deficient Diet Reveals Marker Proteins Associated with Steatohepatitis
نویسندگان
چکیده
The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH). Mice fed a methionine and choline deficient diet (MCD) developed hepatic steatosis characterized by increased free fatty acid (FFA) and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx) is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.
منابع مشابه
Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملMethionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis.
CONTEXT Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. OBJECTIVES This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- ...
متن کاملFructo-oligosaccharides and intestinal barrier function in a methionine–choline-deficient mouse model of nonalcoholic steatohepatitis
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine...
متن کاملEvaluation of Methionine Content in a High-Fat and Choline-Deficient Diet on Body Weight Gain and the Development of Non-Alcoholic Steatohepatitis in Mice
AIM Non-alcoholic steatohepatitis (NASH) is a globally recognized liver disease. A methionine- and choline-deficient diet is used to induce NASH in mice; however, this diet also causes severe body weight loss. To resolve this issue, we examined the effects of methionine content in a high-fat and choline-deficient (HFCD) diet on body weight and the development of NASH in mice. METHODS C57BL/6J...
متن کاملMechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet.
The methionine choline-deficient (MCD) diet results in liver injury similar to human nonalcoholic steatohepatitis (NASH). The aims of this study were to define mechanisms of MCD-induced steatosis in insulin-resistant db/db and insulin-sensitive db/m mice. MCD-fed db/db mice developed more hepatic steatosis and retained more insulin resistance than MCD-fed db/m mice. Both subcutaneous and gonada...
متن کامل